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A Counterexample to a Conjecture of Mahler on Best 
P-Adic Diophantine Approximation Constants 

By Alice A. Deanin 

Abstract. In 1940, Mahler proposed a conjecture regarding the value of best P-adic Diophan- 
tine approximation constants. In this paper, a computational technique which tests the 
conjecture for any particular P is described. A computer search verified the conjecture for all 
P 6 101, except 83. The case P = 83 is discussed. A counterexample is given. 

1. Introduction to Mahler's Algorithm and Mahler's Conjecture. Mahler [5] pre- 
sented an algorithm which yields sequences of approximations to P-adic integers by 
rational numbers which are best with respect to a real reduced positive-definite 
binary quadratic form of determinant -1. Let X be a fixed complex number in F, 
the fundamental domain of the modular group, i.e., the set of complex numbers in 
the upper half-plane which satisfy 

-2 < Rez < I and JzI > 1 or -< Rez < O and JzI = 1. 

Set 

40(X, Y) = A(XX-Y)(X-XY) = IX - IXYI2 

Let ' be a P-adic integer. For every n > 0, let An be the unique (rational) integer 
which satisfies 

O < An < and =An (mod Pn). 

The algorithm defines three sequences. The first of these, z(t), is a sequence of 
complex numbers. Let Zn e z(W) be defined as the unique complex number in F 
which is equivalent by an element of the modular group to (An + X)/P'. That is, 
for some integer matrix 

rn rnl 

[; ;I] 
of determinant 1, (An + X)/Pn = (rnzn + rn'/(qnzn + q'). 

The second sequence T(t) is a sequence of 2 X 2 integer matrices where, for each 
n > O. Tn E T(t,) is defined by 

T pin Xn pn = rnpn _qnAn 

Lqn pn = rnP nqnAn 
Then Tn has determinant Pn and the action of Tn as a linear fractional transforma- 
tion is 

Tnzn = for all n > O. 
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It is clear that JqJgT + p,1jp < P-'. Mahler showed in [5] that if Iq; + pIP < P- 1, 

'1(p, q) > 0, then L)(p, q) > t((pn, qn). Thus T(t) determines approximations to ' 

which are best with respect to ?(X, Y). This suggests the following 
Definition. The best P-adic Diophantine approximation constant is the real 

number cp, the supremum over all c > 0 such that 

lq p+ p < P-, 0 < ? ( p, q) < P 

has solutions for infinitely many n, for all X E F and all P-adic integers t. 
Since Ti-iX = Zn, it is easily seen that y,1 = Im zn = P /F(p,, qn). Thus z,1 E F 

implies that y,, >? 3/2, and it is concluded that cp >3 /2 for all P. Mahler 
showed that cp = 3 /2 if and only if P 1 (mod 6). Using a result of Davenport 
[1], Mahler proved that lim . Cp= 3 /2. de Weger [6] generalized this last result 
to a larger class of norms. 

For a P-adic integer ~, set Y(t) = limyn. (This value is dependent on X.) It is clear 
that 

(1) =cp min Y(g). 
teZp,Xe-F 

In order to study the relationship between the successive elements of z(g), a third 
sequence is introduced. For every n > 1, Q - Q(D) is defined by Q = T- IITn. Each 
?,2 is a matrix of determinant P with integer entries satisfying QirZ0 = Z n-1 Let 
M(P) denote the set of 2 x 2 integer matrices of determinant P which satisfy 
OF n F / 0, where Q acts as a transformation. Any matrix which can occur in the 
sequence Q(t) for some P-adic integer t and some X ( F is necessarily in M(P). 
Mahler showed that the set M(P) is finite for any P and that any Q E- M(P) can 
occur as some On e= Q(D) for some P-adic integer D (although possibly only for 
special choices of X). 

Now let m(P) denote the subset of M(P) of integer matrices of determinant P 
which have a fixed point in F and trace 0 (mod P). The elements of m(P) are 
precisely those which can appear repeated successively in a sequence Q(<) for some g 
(see [5]). For Q E m(P), letfu denote its fixed point in F. Let 

Y(P)= min Imfg. 
&?em(P) 

Mahler conjectured that cp = Y(P). Moreover, he showed that for every - > 0 there 
is a P-adic integer t such that Y(') < Y(P) + c. So with (1) the conjecture can be 
stated as 

MAHLER'S CONJECTURE. For any X E F and any P-adic integer ~, Y( ') > Y( P). 

Mahler proved that Y(P) = VY/2 if and only if P 1 (mod 6), thus for these 
values the conjecture is trivially verified. Mahler also verified the conjecture for 
P = 2, 3 and 5. These verifications checked that, for each Q e M(P), if both z E F 
and Qz E F then maxtIm z, Im Qz } > Y(P). (For some matrices in M(2) and M(3) 
this was not the case, but such matrices could not occur more than once in 
succession in a sequence Q(t) for any T.) This suffices to verify the conjecture, for it 
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implies that for every 5-adic integer and every index n, max{yn, ynl) > Y(5). 
(Similarly, for any 2-adic (or 3-adic) integer and every index n, max{ yn,,Y , Yn?2I 

> Y(2) (or Y(3)).) 

For this paper, the analysis is carried further by adapting the method for 
computer search. The conjecture was thus checked for all P < 101 and, in fact, 
verified for all such P except P = 83. Additional investigation showed that Mahler's 
conjecture is, in fact, false for P = 83. A periodic Q(.) sequence can be constructed 
as a counterexample. Additional information about periodic sequences can be found 
in [2], [3], [6]. 

This paper is organized as follows. In Section 2, the matrices in the finite set 
M(P) are described by an explicit set of inequalities which their entries must satisfy. 
In Section 3, a method is described that determines a value Y(Q) < 
max{Im z, Im Qz} when z, Qz e F, for each Q e M(P). The values of Y(P) are 
tabulated in an appendix. If for every Q e M(P), Y(Q) > Y(P), then the conjecture 
is verified. There are primes for which this verification fails; the first such is P = 83. 
In Section 4, this failure is discussed. In Section 5, the counterexample for P = 83 is 
given. 

2. The Set M(P). In this section, inequalities are given which the entries of a 
matrix Q in M(P) must satisfy. Since these inequalities are intended to assist in 
studying Mahler's conjecture, the inequalities are specifically for P 5 (mod 6). The 
derivation of these inequalities is described and a sample derivation is given. For full 
details, see [2]. 

Throughout the paper, let 

-1 + F 
Q= [ P '] and p 2 

Because Q and -Q represent the same transformation, the inequalities will assume 
that ,B > 0. It is clear that if Q e M(P) then -PO-1, an inverse of Q as a 
transformation, e M(P) as well. 

Definition. The isometric circle, I, of a transformation Q where ,B * 0 is the circle 
centered at -,B'/,B of radius FP/,B. The isometric circle, I', of the inverse transfor- 
mation is the circle centered at a//l of radius FP/,B. (A complete discussion of 
isometric circles can be found in Chapter 1 of [4].) 

The transformation Q acts on the complex plane by inversion through the circle I 
and then through the line x = (a - ,B')/2,B. The circle I is mapped to the circle I'. 
The region inside (outside) the circle I is mapped to the region outside (inside) the 
circle I'. 

In order to guarantee the condition OF n F * 0, it is necessary that at least one 
of the isometric circles I or I' intersect F. Thus p or 1 + p is inside one of the circles, 
which happens when 

(2) /3~~~2 + pglpgl + #ft2 <, p or 2 + I|a|/3, + 8 2 < (2) c b s +h aif 'I+ or t , 

This can be used to show that if /3 * 0, then (/,fl') = 1. 
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In [5], Mahler divided the set M(P) into three subsets, M1(P), M2(P) and M3(P) 
according to whether 2F n F is a region of nonempty interior, a curve, or a single 
point. The elements of the sets M2(P) and M3(P) can be listed explicitly. The 
justification for these listings is detailed in [2]. 

A transformation Q2 e M2(P) maps a portion of the boundary of F to a portion of 
the boundary of F. This happens for precisely the matrices 

1 -(P + 1) 
- 2 ' 

p-(P +1) ( - P)l (1 2P)l 

L 21 2 2 and its inverse as a transformation I2 

A transformation S2 E M3(P) when the corner point p of F is mapped to a 
boundary point of F by S2 or its inverse. This happens precisely for the matrices 

[ - +1) anditsinverseasatransformation (1 +P) ] 

The case for S2 E M1(P) with /3 = 0 is also straightforward. These matrices are all 
those of the form 

[2 ] and its inverse as a transformation [ 1 ] 

for (-P + 1)72 < a' < (P -1)72. 
Let F denote the interior of F. c2 E M1(P) if and only if F is Fp 0. This 

condition is easier to work with because of the symmetry of F. Clearly, if m satisfies 
this condition, then so does -Pv1, the inverse transformation. Furthermore, when 

The> 0 the isometric circles Of i'- [P i and its inverse are just reflections across 
the imaginary axis of those of Q-h and S2. Thus Q2'F fl F # 0 whenever Q2F fl F # 0 . 
Consequently, when fB> 0, of the four matrices 

[aa1 -3 '1 [3 t [- -a' 

it is only necessary to consider one. The inequalities for the entries of iof E M1(P) 
with cnt> o are determined assuming that ai> 0 and F/3,hr> a. 

Assuming that ioe> 0 and c ,ie > a > 0, (2) reduces to 

32 - a1 + a2 < P. 
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This yields an upper bound for fB in terms of P, 

2< 

as well as upper and lower bounds for a in terms of fB and P. However, to determine 
ranges for fl', it is effective to break the problem into four cases: 

(i)a2 + a3 + ,32< P and a//3> 
(ii) a2 + a/3 + /32 < P and a// < 1 
(iii) a2 + a1, + # 2 > P and a/, > 4. 
(iv) a2 + a/3 + jB2> P and a//3< 2. 

In each case, bounds for a, /3 and /3' can be determined by examination of the image 
of F under 2 The inequalities in case (i) are derived below as an example; for the 
other cases, see [2]. The inequalities for all four cases are summarized in Figure 1. 

Case (i). The conditions defining case (i) imply 

/3 -/3 F4P- 3/2 
2 H< 2 2 

This interval is nonempty when ,8< 2AP/ F7. 
If 

fB' 

> 
a, 

Q-1F 

fl 

F A 0 if and only if at least one of 
2-1(p), S21(1 + 

p) has real 
part > - 2. (Because a2 + a/3 + 

f82 
< 

F, 
their imaginary parts are large enough.) 

Thus, 

-2 < max{Re Q-'(p) i-'(1 + p)} 

=max{ I~ 2 a+f 8 P + 2a -f8 P /3 P + 2/3 2+a/3+ /2 /3 2/ a2 + 
_ 

/2 
+ )2 

which becomes 

P/ < max{P + 2a 
+ P P P 2a -/ P-/3P3 A ( ~2 2 012 + a#B + P 2 '2 2 a 2_ apB+#j2) 

The former term is larger when a < /. 
If fB' < -a, then 92-'F lies entirely to the right of x = a/13 > and cannot 

intersect F. 
The entries a, fB and fB' of a case (i) matrix must satisfy 

0 < .< 2An, 

#2 
2 2 2 P 

2a + 2 2 a2 a/3+/32 if a>/3 

|2 2 a 2 _an + ,B2 

Figure 1 gives a flow diagram for deciding when a matrix Q with /3 > 0 and 
II'I > a > 0 has PF n F * 0. Find the range on the left line where /3 falls. For the 
a scale assigned to that range, find the range in which a falls. The case inequalities 
named for that range give allowable choices for /3'. The case inequalities are listed at 
the right. 
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FIGURE 1 

3. Testing Mahler's Conjecture. In this section, techniques used to determine the 
value Y(Q) for each Q in M(P), P 5 (mod 6), are discussed. The computations 
require an involved case analysis. Sample computations are given. 

Definition. For any matrix Q E M(P) 

Y( Q ) = inf {max{Im z, Im Qz}}, 

where the inf is taken over all z for which z E F and QAz E F. 
The values of Y(Q) for Q in M2(P) or M3(P) are easy to determine. These values 

are quite large compared to Y(P) and do not figure in the conjecture testing. The 
values of Y(Q) for upper-triangular Q are also large; such matrices can thus be 
eliminated from serious conjecture testing work. 

The complicated testing arises in computing Y(Q) for 1 = [| 7| Ee M1(P) which 
have 8 > 0. The value of Y(Q) will be the same for the four matrices 

sa a)f w -a an of > 3 are s -tie ad 
Lo I' A -oe8f al . -a] 

so only those i2 for which ,P > 0 and 18' I >, a > 0 are studied. 
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For Q E M1(P), Y(Q) = inf{max{Im z, Im Az } }, where the inf is taken over all z 
for which z and Qz E F, the closure of F. The boundary points of F frequently yield 
the value for Y(Q). 

The matrices are divided into cases depending on the position of the isometric 
circles with respect to the boundary of F. 

(i) a2 + A/3 + /2 < P and a < /' < a + A. 
(ii) a2 + a/3 + 32 > P and a < /' < (a + /3)/2 + (P - /32)/2a. 
(iii) all other matrices with a < /3'. 

(iv) a2 + a/3 + /32 < P and -a > /3' > a -/. 

(v) all other matrices with -a > /3'. 
For each S2, a lower bound for Y(Q) can be established. For most matrices, the value 
established equals Y(Q), but calculating this exact value is impractical in some 
"extreme cases", e.g., when /3' is large. Two techniques are described. 

For cases (i), (ii) and (iv), both the isometric circles I and I' of a and S2-' intersect 
the boundary of F. If a point z is on I (resp., I'), then Im z = Im Qz (resp., 
Im z = Im W -1z). If z lies inside I (resp., I'), then Im z < Im ?Qz (resp., Im z < 
Im SiA`z). Thus a good candidate for Y(Q) is the imaginary part of the lowest z on 
an isometric circle for which both z and Qz or z and Q'Vlz are in F. Denote this value 
y1- 

It is still possible that there is a z E F with Im z < Y1 and Qz (resp., Q-1z) E F 
with Im Qz (resp., Im Q-1z) < Y1. The corner points p and 1 + p and low boundary 
points of F are likely candidates for such a z. The behavior of these points must be 
compared with that of the isometric circle point which produced Y1. The best 
comparison value is denoted Y2. Sometimes the value easily identified for Y2 is not 
the best possible, but 

Y(Q2) > min{Y1, Y2}. 

In cases (iii) and (v), the points on the isometric circles in F do not map (under al 
or Q-1) to points in F, or such points are difficult to determine. A value y(Q) may be 
computed instead. Let G be the set of points of the lower-boundary arcs of ?-F 
which are contained in F. Set 

y(2) = max{ inf {Imz}, inf {ImQz}}. 
ze G z (-G 

Since infzeG (Im z } < Y(Q) and infzEG (Im Qz} Y(), 

Y(?) Y(Q) 
The details of case (i) are presented as an example, with figures at the end; the 

details of the other cases are included in [2]. 
Notation. The intersection point of two curves Cl and C2 will be denoted C1 n C2. 
Case (i). Let 

z= I' f(x = 

Z ={(I(X = -) if 2 + A, + ,2 < p, Z = X(|zI = 1) if #2 + Be, + #,2 > p. 

These are the possible isometric circle points described earlier. Set Y1 = max{Im zo, 
Im z' ). Y1 must be compared to the values of Im - 1z, where z, l- 1z E Fare inside 
I'. For each of six subcases, a value Y2 is defined which is < the least such Im S?-1z. 
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The condition 

,B'3< a+1,B<2+ 2 a2+ a/3 + ,2 

implies that Re Q 1(p) > - 2 

(a) rlh(p) e F: set Y2 = Im Q-(p). Then Y(Q) = min{Y1, Y2). 

(b) Re Q-i(p) > 2: let z = -(x= - ) n (x = 2). Set Y2 =max{Im zj, 
Im Qzj). Then Y(Q) = min{Y1, Y2). 

In (c)-(f), 2-1(p) lies in the small region where - 2 < Re z < 2, Im z > 1i/2 and 
zI < 1. In each case, Y2 < Y(Q) < Y1. 

(c) Im(Q-1(x = - 2) (x = - 2)) < v'i/2: let z = l(x= - ) n (Izi = 1) and 
Z2 = Q-1(jzj 1) n (jzj = 1). 

In (d)-(f), Im(Q-1(x = - 2) fl (x = - 2)) < V/2. 
(d) Re -V1(1 + p) > 2: let z1 = Q-1(jzj = 1) n (Izi = 1) and Z2 = --1(IzI = 1) 

(x =2 

Case (i) 

I 

Case (ia) Case (ib) 

z2. 

Case (ic). 

z2 f2 
z2 

Case (id) Case (ie) Case (if) 

FIGURE 2 
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(e) Re 2'(I + p) < - 2: let z1 = Q-1(IzI = 1) n (IzI = 1) and Z2 = 0-'(JZj = 1) 

(x = - '). 

(f) Re Q-'(1 + p) E F: let z1 = Q-1(IzI = 1) n (Izl = 1) and Z2 = Q2-(1 + P). 

In each of the above four cases, set 

Y2 = max{min{Imz1,Imz2}, min{Im2zImMQz2}}. 

4. The Results of Computer Testing. In the computational testing of Mahler's 
conjecture, a program was written in PASCAL, and the UNIVAC 1180 at the 
University of Maryland was persuaded to run it. The program tested each matrix 
whose entries satisfy the inequalities in Figure 1. For each such matrix Q, a value 

Y* g) fmint Y1, Y2 } in cases (i), (ii), and (iv) 
() 

Y( Q) in cases (iii) and (v) 

was established. In every case, Y*(Q) < Y(Q). Let Y*(P) = mine Y*(Q). 
The program was run for all P 5 (mod 6) up to P= 101. It was found that 

Y*(P) = Y(P) for all the values of P tested except P = 83, so the conjecture is true 
for these values. 

The failure of the test for P = 83 does not show that the conjecture is false. The 
program tested the much stronger statement, that Y(Q) >? Y*(Q) > Y(P) for all 
? E M(P), and this fails for P = 83 in an obvious way. Consider the isometric 
circles I and I' for = [- 7] whose fixed point has imaginary part Y(83). Let 
z0=I' n (x =-); then z, Q-1z E F and Imz0 = Im z2z 8 = 3 /18 
< 296 /18 = Y(83). Such a point exists because the isometric circles intersect the 
boundary of F below Y(83); this happens because the fixed point of Q does not lie 
on the unit circle. The same problem arises for other P, whenever a fixed point f of 
an elliptic matrix i has Im f = Y(P) and Ill 1. Since If12 = -a'//, it is easy to 
identify such P by examination of the table in the appendix. For P < 1000, they are 
83, 167, 227, 251, 359, 467, 479, 587, 647, 743, 773, 797, 827. 911, 941 and 947. 

5. A Counterexample. It is not possible to disprove the conjecture using only the 
fact that Y(2) < Y(83) for the matrix [ 9 1?]. However, the computer testing found 
four other matrices satisfying the inequalities in Figure 1 for which Y(Q) < Y(83); 
they are 

[3 -8 [3 -7] [7 -9] 7 -3 
L7 9 ' 8 9 ' 3 8 ' 9 8 

This yields 20 matrices in MJ(83) having Y(Q) < Y(83). An examination of products 
of pairs of these matrices found 

-9 -8 l-9 -7 = 17 87 
L7 -3] 8 -3 L-87 -40' 

an elliptic matrix whose fixed point -19 + 3003 i/58 has imaginary part less than 
Y(83), and 

[ 9 -]7 - 9 -8] = [32 93] 
L8 - 3] 7 - 3 t-93 -55' 

an elliptic matrix whose fixed point (-29 + 300ii)162 has imaginary part less than 
Y(83). For a specific X E F, a periodic sequence of the above matrix factors can be 
shown to be the R(C) sequence of a P-adic integer g with Y(s) < Y(83), disproving 
the conjecture. 
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In [5], Mahler proved that a sequence {t n} I' is the sequence Q(0) for some g if 
and only if, for a given X, and setting 

Tn Q ... n= 
Pn 1n 
qS q j'An 

Tj'- X E F and (qn qn,) = 1. 
For the counterexample, let 

-19 + 3003i 
58 

and let 

-9 -8 for n odd, 

[8 -3 f;rn even. 

Then, by definition, 

17 ]7 -lK9 j forn odd, 

n 
17 8~~7 ii/2 

[-87 40 for n even. 

Note that 

f 
-29?+0 F fornodd, 

T1-A ix 62 
-19 003= X E F for n even. 

58 

Furthermore, by a congruence relation in Section 9 of [5], for even n, 

T =T2k -40] - 40) [87 40] 83), 

hence q, and qn are not both divisible by 83 and must be relatively prime. Also, for 
odd n, 

[17 87 ]k[9 -8] 
, T2k+1 [-87 -40 7 -3] 

-(17 -40) [ 877 40]7 -3 (mod 83) 

so that again, (q,, qn) = 1. This verifies that the sequence {tn} is a legitimate Q(t) 
sequence; it is in fact the sequence for '= -A= (19 - 3003 i)/58 with the 
indicated X. This is a counterexample to the conjecture because 

y(g) = lim Im T.,'X = max 58 ' 62 ) <9 = Y(83). 

It is likely that such constructions exist for other P for which Y(P) occurs as the 
imaginary part of a fixed point of a matrix in m(P) where the fixed point is not on 
the unit circle. 
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The nature of the construction of the counterexample suggests that the value of 
the best P-adic Diophantine approximation constant may be determined by the 
im4nuv part of a- fixet onit in- E om tOm unit Sckc of an- ellipthc matrix- of 
determinant Pg. This possibility is being studied. 
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Appendix. The table below gives Y(P) for all P 5 (mod 6) less than 1000, along 
with a matrix in m(P) whose fixed point has imaginary part Y(P). 

P Y(P) matrix P Y(P) matrix p Y(P) matrix 

[1 2 173 22 L11 131 389 13 13 22 

11 V [1 -31 179 18 
7 

[ 7- 401 -1 V 
[ 2 -191 

6 L3 21 18 L9 i 4 19 Li9 20i 
i/l 2 [ - ~31 5/ [ 1 i6 75 -ii -231 
3 [3 41 191 22 [11 141 4i9 46 [23 10 ] 

1 0 5 1 13 141 46 '23 7' 23 10 L- -5] 197 13 [13 14] 431 L6 [ 3 

29 V9Y [i 5 227 L[-13 -16i 443 34 [ 221 1 0 [5 411 1 5 134 [17 2 
Vi -4 -71 VY[4 -131 V20 [4 -191 41 2 7 [7 2 233 13 13 16 449 19 19 221 

4727 [2 -71 239 ' [-10 -171 461 1675 [-17 -231 
14 [7 ii1 34 [17 5] 46 [23 41 

53 4 7I 251 -11 -18 467 23 -17 -24 
10 LS 71 17 Li7 51 23 123 51 

59 g [-5 -8] 257 115 161 24 [24 11 

71 
V [-5 -9 263 [-13 -17] 491 24 

-17 -241 71 18 19 2 ~ 2 
34 7 224 '24 5 

83-7 -10 269 34 [ 1 81 2' 503 22 1 ] 
9 9 1 ~~~~9 118 Si 22 L22 19j 

89 2" [4 -7 281 19 [ 1 80 1 19 509 rl67 j 2 -23] 7 7 
9 [-10 -191 9 23 F203 1 

101 2 -9 ~ ~ ~ 7-31 4 -~17 2 V 1 3 -14 
10 9 [2_910 293 30 15 17 521 7 14 25 

107 22 [-7 -11] 311 v22 [1 - 19 ] 557 v [-17 -26 

22r1 
22 11 

1 
26 

1 
113 2 -11 3 1219 [-11 -191 563 X7-Y [13 -15 

22 Lu1 1 37 38 [19 41 30 115 261 

131 - [3171 1219 [-14 -191 569 ~ -16 -271 131 22 [11 10 38 [19 1 27 127 101 

137 - r-8 -131 4 [- 11 -21 58 7 [-13 -28 17 13 [13 41 33 42 121 81 57 27 127 131 

149 L -10 -132 3 9 78 [18 17] 593 [291 -17 -27] 

167 1[3 -131 V [-17 -201 599 1 17 12 112 2 1 33 20 20 1 24 L24 231 



632 ALICE A. DEANIN 

P Y(P) matrix P Y(P) matrix P Y(P) matrix 

617 
V [ 14 -151 761 __36 -20 -31 887 Vi403 [13 -22 

1 5 115 2 8 31 1 3 1 101 22 122 311 

641 r56 -22 -27] 773 VI, [- - 31 1 911 
v 

[-27 -321 27 27 4 ~~~~~~1 5 '30 1 1 3 1 L 31 31 

647 28 [-2 28 112 797 531 [3115 1 929 15 [30 291 

283 3 3 -23 -26 189 80 14 -191 941 > [-23 -33 
653 13~ [23 -21 809 19 [19 321 

91 16 [32 51 

659 r2635 [-14 -291 821 Vi3i3 [ 5 -261 947 
1 

[-25 -341 
69 58 29 131 13 126 291 33 133 71 

677 
v _ [2 25 27 ] 867 [-24 -31 953 811 [-17 -351 

25 [25 26] 58 L29 3 70 L35 16~ 

683 2 [ 23 27 839 675 [10 -23 971 675 [13 -23 
54 L27 21 46 2 14 3 3 

701 r6 265 [-20 -291 857 v/7Y3i [-26 -31 977 v3-3 [-28 -33] 71 58 129 71 31 31 41 33 33 4 

7 19 
9 

[11 -201 863 
9 

[-23 
-32 

983 811 [-22 -351 
20 120 291 32 132 71 70 135 111 

___ [-4 -17 -311 ____8 8 -251 743 30 [30 11 881 25 [25 321 
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